Imaging Results
All diagnostic imaging is interpreted by a specialized doctor known as a Radiologist. The Radiologist will dictate a report that will be sent to your referring physician, typically in less than 24 hours. For breast imaging, a results letter will be sent to the patient’s mailing address. For all other imaging studies, please contact your healthcare provider for result.

Scheduling
All exams require an order from your healthcare provider. Once you have an order, call (509)793-9651 to schedule your exam. General x-ray exams do not require advanced scheduling and can be done at a walk-in basis at Samaritan Hospital and Samaritan Clinic.

Service Locations
Diagnostic Imaging at Samaritan Hospital
- X-ray
- CT
- Fluoroscopy
- Echocardiography
- Ultrasound
- 3D Mammography
- Nuclear Medicine
- DXA
Check-in at one of the registration offices located in the main lobby of the hospital. During afterhours and weekends you will be directed to the Emergency Department Admitting office to sign in.
Walk-in hours: Monday-Friday 8am-6pm

Diagnostic Imaging at Samaritan Clinic
- X-ray
- MRI
Check-in at the receptionist desk at Urgent Care in Suite 100.
Walk-in hours: Monday- Friday 8am-7pm
Weekends 9am-6pm
A Wide Variety Of Services

Samaritan Healthcare's Diagnostic Imaging Department provides both inpatient and outpatient services. All imaging staff members are registered nationally and our interpreting doctors are board certified. We are committed to providing accurate and timely diagnostic imaging services.

X-Ray

X-ray, also known as diagnostic radiology, is the most basic form of medical imaging. It works by sending beams of energy through the body. The bones appear white or grey on the x-ray image, while soft tissues appear darker. X-ray is usually the first step in medical imaging.

Fluoroscopy

Fluoroscopy is an x-ray imaging technique that captures pictures of the body and displays them on a video monitor much like a movie. In many cases, contrast material is used with fluoroscopy exams to help highlight internal structures such as organs or blood vessels. Contrast material can be swallowed, injected through a vein or given by an enema depending on the exam and part of the body that is being examined.

Ultrasound

Also known as sonography, ultrasound uses high frequency sound waves to create still or video images of the inside of the body. It works much like the sonar used in fish finders and ships. The technologist places gel on the skin and uses a handheld wand called a transducer to capture the images. There is no radiation used, so this exam is safe for pregnant women and children.

Computed Tomography (CT)

Computed Tomography, commonly known as a CT scan, uses x-rays and computers to produce cross-sectional images or slices of the body. The radiologist can look inside the body just as one would look at the inside of a loaf of bread by slicing it. During the scan, the patient must lie as still as possible as the table moves through the large, donut-shaped scanning device. The scan time is relatively short and contrast material may be used. With CT, physicians can accurately evaluate the location, shape, size, density and texture of internal body structures.

Magnetic Resonance Imaging (MRI)

By using a strong magnetic field and radiowaves, Magnetic Resonance Imaging or MRI can produce highly detailed images of the body without the use of x-rays. During this exam the patient lies on a table and the area of the body being examined in placed inside a machine. Much like a CT scan, MRI produces cross-sectional images and can help detect, diagnose and treat medical conditions. Due to the use of a powerful magnet, some patients with metal implants, like cardiac pacemakers, in their body may not be able to undergo an MRI study.

Nuclear Medicine

The name Nuclear Medicine refers to a small amount of radioactive material (radioisotope) that is combined with medicine to form a radiopharmaceutical, also known as a tracer. The tracer is given by mouth, injection or can be inhaled. The tracer emits radiation and a special machine called a gamma camera can detect the location of the tracer within the body. After receiving the tracer, the patient lies on a table while the gamma camera collects information. Nuclear medicine can show the structure and function of organs and other tissues and can be used to diagnose and treat diseases.

Echocardiography

An Echocardiogram is a specialized Ultrasound of the heart. During this test three small, sticky patches called electrodes are placed on the chest and attached to an electrocardiograph (EKG) monitor that charts the heart’s electrical activity. The sonographer will use gel and an ultrasound transducer to take images at several areas of the chest. This provides pictures of the heart’s valves and chambers and helps to evaluate the overall function of the heart.

Bone Densitometry (DXA)

Dual-Energy X-Ray Absorpiometry or DXA is the most common and accurate tool to measure loss of bone. By using a very low energy X-ray scan at various parts of the body, this exam will measure your bone mineral density (BMD) and can detect osteoporosis as well as predict your risk of bone fractures.

3D Mammography

Breast Tomosynthesis, or 3D Mammography is the newest tool in the fight against breast cancer. The exam is performed similar to the traditional mammogram, with two view of each breast being imaged while the breast is under compression. Tomosynthesis creates a three dimensional picture that can also be viewed in 1-millimeter slices, making it possible to visualize breast tissue at a level of detail never possible before.